Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(morpholin-4-ium) tetrachloridocobalt(II)

Wen-Zhen Wang, ${ }^{\text {a* }}$ Rayyat Huseyn Ismayilov, ${ }^{\text {b }}$ Gene-Hsiang Lee, ${ }^{\text {c }}$ Yuh-Sheng Wen ${ }^{\text {d }}$ and Shie-Ming Peng ${ }^{\text {e }}$ *
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China, ${ }^{\mathbf{b}}$ Institute of Chemical Problems, Azerbaijan Academy of Sciences, Baku, Azerbaijan, 'Instrumentation Center, National Taiwan University, Taipei 106, Taiwan, ${ }^{\text {d Institute of Chemistry, Academia Sinica, Taipei 106, }}$ Taiwan, and ${ }^{\text {e }}$ Department of Chemistry, National Taiwan University, Institute of Chemistry, Academia Sinica, Taipei 106, Taiwan
Correspondence e-mail: wzwang@xsyu.edu.cn, smpeng@ntu.edu.tw

Received 15 November 2011; accepted 9 December 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.030 ; w R$ factor $=0.059$; data-to-parameter ratio $=17.3$.

The title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$, is an ionic compound consisting of two protonated tetrahydro-1,4oxazine (morpholine) cations and a $\left[\mathrm{CoCl}_{4}\right]^{2-}$ dianion. The $\mathrm{Co}^{\mathrm{II}}$ ion is in a tetrahedral coordination geometry. The cations exhibit chair-shaped conformations. A three-dimensional supramolecular architecture is formed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the dianions and the cations.

Related literature

For background to this class of compound, see: Ismayilov et al. (2007); Kiehl et al. (2004); Leung et al. (2002); Wang et al. (2007, 2008). For the synthesis, see: Wang et al. (2007, 2008). For related structures, see: Fastje \& Möller (2009); Szklarz et al. (2009); Wu et al. (1997).

Experimental

Crystal data
$\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$

$$
\begin{aligned}
& a=9.7545(5) \AA \\
& b=15.0283(8) \AA \\
& c=10.4785(5) \AA
\end{aligned}
$$

$\beta=94.064(3)^{\circ}$
$V=1532.22(13) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\text {min }}=0.714, T_{\text {max }}=0.899$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.059$
$S=0.89$
2661 reflections

$$
\mu=1.81 \mathrm{~mm}^{-1}
$$

$T=100 \mathrm{~K}$
$0.20 \times 0.16 \times 0.06 \mathrm{~mm}$

10714 measured reflections
2661 independent reflections
2001 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.92	2.40	$3.275(3)$	159
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{C} 1$	0.92	2.38	$3.184(2)$	146
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 3$	0.92	2.45	$3.232(3)$	142
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.92	2.37	$3.264(3)$	163
$\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.99	2.71	$3.603(3)$	151
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl}^{\mathrm{i}}$	0.99	2.77	$3.556(3)$	136
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.99	2.83	$3.767(3)$	158
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii) $x,-y+\frac{3}{2}, z-\frac{1}{2} ;$	(iii)
$-x+2, y+\frac{1}{2},-z+\frac{3}{2}$.				

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2366).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fastje, O. \& Möller, A. (2009). Z. Anorg. Allg. Chem. 635, 828-832.
Ismayilov, R. H., Wang, W.-Z., Lee, G.-H., Wang, R.-R., Liu, I. P.-C., Yeh, C.-Y. \& Peng, S.-M. (2007). Dalton Trans. pp. 2898-2907.
Kiehl, P., Rohmer, M.-M. \& Benard, M. (2004). Inorg. Chem. 43, 3151-3158.
Leung, M.-K., Mandal, A. B., Wang, C.-C., Lee, G.-H., Peng, S.-M., Cheng, H.-L., Her, G.-R., Chao, I., Lu, H.-F., Sun, Y.-C., Shiao, M.-Y. \& Chou, P.-T. (2002). J. Am. Chem. Soc. 124, 4287-4297.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Szklarz, P., Owczarek, M., Bator, G., Lis, T., Gatner, K. \& Jakubas, R. (2009). J. Mol. Struct. 929, 48-57.
Wang, W.-Z., Ismayilov, R. H., Lee, G.-H., Liu, I. P.-C., Yeh, C.-Y. \& Peng, S.-M. (2007). Dalton Trans. pp. 830-839.

Wang, W.-Z., Ismayilov, R. H., Wang, R.-R., Huang, Y.-L., Yeh, C.-Y., Lee, G.-H. \& Peng, S.-M. (2008). Dalton Trans. pp. 6808-6816.

Wu, L., Yao, Y.-G. \& Huang, X.-Y. (1997). Chin. J. Struct. Chem. 16, 191-194.

supplementary materials

Bis(morpholin-4-ium) tetrachloridocobalt(II)

W.-Z. Wang, R. H. Ismayilov, G.-H. Lee, Y.-S. Wen and S.-M. Peng

Comment

Oligo- α-pyridylamine ligands are very useful in the synthesis of metal string complexes, which are also known as extended metal atom chains (EMACs). EMACs are invaluable for acquiring a fundamental understanding of metal-metal bonds (Kiehl et al., 2004) and for potential applications such as molecular electronic devices. These oligo- α-pyridylamine ligands contain pyridyl and amine groups, and can result in the formation of double helical structures in nonpolar solvents due to hydrogen bonding (Leung et al., 2002). After deprotonation of oligo- α-pyridylamine ligands, the resulting anions can stabilize the linear metal cores. Activation of the H atom was observed in some EMACs. Recently we designed a series of modulated oligo-a-pyridylamino ligands, by including one or more of the nitrogen-rich aromatic rings such as pyrazine, pyrimidine and naphthyridine instead of pyridine rings to the ligands. The modification of ligands significantly improved the reactivity leading to the EMAC, and resulted in complexes with very different redox properties (Wang et al., 2008). Furthermore, by providing more donor nitrogen atoms in aromatic rings, the pyrazine ligands exhibit more coordination forms and are especially versatile in the construction of coordination polymers with potential applications in gas storage, catalysis, magnetism, luminescence, etc. due to their ability to form multidimensional frameworks through multiple metal-binding sites. (Ismayilov et al., 2007; Wang et al., 2007, 2008). Some interesting phenomena were also observed, e.g. the observation of disassembly of ligands during the preparation of EMACs. In this paper we describe a compound (I) from the decomposition of pyrazine-modulated N^{2}-(pyrazin-2-yl)- N^{6} - (6-(pyrazin-2-ylamino)pyridin-2-yl)pyridine-2,6-diamine ($\mathrm{H}_{3} \mathrm{pzpz}$) relating to the preparation of heptacobalt complexes (Wang et al., 2007).

The crystal structure of $\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}_{2}\left[\mathrm{CoCl}_{4}\right]\right.$ shown in Fig. 1 consists of two protonated tetrahydro-1,4oxazine(morpholine) cations $\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right]^{+}$and a $\left[\mathrm{CoCl}_{4}\right]^{2-}$ dianion, the compound $\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right]_{2}\left[\mathrm{CoCl}_{4}\right]$ is a hybrid ionic inorganic-organic compound of $\mathrm{Y}_{2} X$ type. The $\mathrm{Co}^{\mathrm{II}}$ ion is in a tetrahedral coordination geometry. The Co- Cl bond distances are in the range 2.2583 (8) - 2.2818 (8) \AA with an average of 2.2675 (8) $\AA\left(\mathrm{The} \mathrm{Co}-\mathrm{Cl}\right.$ in CoCl_{2} is $2.43 \AA$). The bond angles between $\mathrm{Co}-\mathrm{Cl}$ are in the range $106.01(3)-113.73(3)^{\circ}$ with an average of $109.43(3)^{\circ}$, which is very close to the ideal tetrahedral angle value of 109.28° (Fastje \& Möller, 2009; Szklarz et al., 2009; Wu et al., 1997).

The cations are six-membered heterocycle rings, protonated tetrahydro- 1,4-oxazine, and exhibit chair-shaped conformations. All bond angles in the rings are in the range $108.8(3)-111.9(2)^{\circ}$ with an average of $110.4(3)^{\circ}$, which is well consistent with a $s p^{3}$ hybrid orbital angle. The nitrogen atom in tetrahydro-1,4-oxazine was protonated owing to the low basicity of tetrahydro-1,4-oxazine $\left(\mathrm{pK}_{\mathrm{a}}=8.4\right)$ due to the inductive effect of oxygen atom. The average $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond distances exhibit a typical value of single bonds, which are 1.503 (4), 1.490 (4) and 1.419 (4) \AA, respectively.

Extensive hydrogen bonds between chloride atoms $\mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$ in the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ dianion and nitrogen and oxygen atoms $\mathrm{N}(1), \mathrm{N}(2), \mathrm{O}(1)$ and $\mathrm{O}(2)$ in both tetrahydro-1,4-oxazine cations were observed (Table 1$)$. $\left[\mathrm{CoCl}_{4}\right]^{2-}$ dianions were paired through the hydrogen bonds between $\mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{N}(1)$ atoms, resulting in an 8-membered ring $\mathrm{N}(1) \cdots \mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2) \cdots \mathrm{N}(1) \cdots \mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$ (Fig. 2) which were further linked to a 2-D sheet extending in the $b c$

supplementary materials

plane through hydrogen bonds between $\mathrm{Cl}(3)$ and $\mathrm{N}(2)$ atoms. A group of weak hydrogen bonds involving carbon atoms were observed between layers, which build the title compound (I) into a 3-D network (Fig. 3).

Experimental

Anhydrous $\mathrm{CoCl}_{2}(254 \mathrm{mg}, 1.95 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{pzpz}(300 \mathrm{mg}, 0.84 \mathrm{mmol})$ and naphthalene $(65 \mathrm{~g})$ were placed in an Erlenmeyer flask. The mixture was heated under argon and then a solution of potassium tert-butoxide ($311 \mathrm{mg}, 2.77 \mathrm{mmol}$) in n-butyl alcohol (5 ml) was added dropwise. The reaction was continued for another 12 h . After cooling the product was transferred to hexane to wash out the remaining naphthalene, and then $100 \mathrm{ml} c a \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used to extract the complex. A dark green product, mainly the heptacobalt(II) metal string complex, $\left[\operatorname{Co} 7\left(\mu_{7}-\mathrm{pzpz}_{4}\right)_{4} \mathrm{Cl}_{2}\right]$, was obtained after evaporation. The title compound was obtained as a side product from the reaction. Light blue single crystals suitable for X-ray diffraction were obtained by diffusion of ether into a chloroform solution of the green product.

Refinement

H atoms attached to C and N atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.99 \AA$, $\mathrm{N}-\mathrm{H}=0.92 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}, N)$.

Figures

Fig. 1. The molecular structure of (I) with ellisoids at the 30% probability level.

Fig. 2. An 8-membered ring generated by hydrogen bonds (dashed lines) in (I). Atoms labelled with the suffixes ${ }^{i}$ are at the symmetry equivalent position $(-x+1,-y+1,-z+1)$. Ellipsoids are drawn at the 30% probability level.

Fig. 3. A packing diagram of (I) viewed down the c axis. Dashed lines represent hydrogen bonds. Atoms labelled with the suffixes ${ }^{\text {i }}$, ii , and ${ }^{\text {iii }}$ are at symmetry equivalent positions $(-x+$ $1,-y+1,-z+1),(x,-y+3 / 2, z-1 / 2)$ and $(-x+2, y+1 / 2,-z+3 / 2)$, respectively.

Bis(morpholin-4-ium) tetrachloridocobalt(II)

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=376.99$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.7545$ (5) \AA
$b=15.0283$ (8) \AA
$c=10.4785(5) \AA$
$\beta=94.064$ (3) ${ }^{\circ}$
$V=1532.22(13) \AA^{3}$
$Z=4$
$F(000)=772$
$D_{\mathrm{x}}=1.634 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2047 reflections
$\theta=2.4-24.0^{\circ}$
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, blue
$0.20 \times 0.16 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.714, T_{\text {max }}=0.899$
10714 measured reflections
2661 independent reflections
2001 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-11 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.059$
$S=0.89$
2661 reflections
154 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.012 P)^{2}+2.9504 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

supplementary materials

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Co	0.68020 (4)	0.58131 (3)	0.71185 (4)	0.01425 (11)
Cl1	0.49824 (8)	0.64671 (5)	0.79526 (7)	0.01891 (18)
Cl 2	0.70544 (8)	0.43579 (5)	0.76441 (7)	0.02066 (19)
Cl 3	0.87551 (8)	0.65335 (5)	0.78680 (7)	0.01802 (18)
C14	0.65461 (8)	0.60624 (5)	0.49825 (7)	0.01990 (19)
O1	0.0543 (2)	0.71540 (14)	0.4880 (2)	0.0254 (6)
N1	0.3114 (2)	0.62863 (16)	0.5349 (2)	0.0180 (6)
H1A	0.3245	0.5998	0.4592	0.022*
H1B	0.3855	0.6164	0.5914	0.022*
C1	0.1733 (3)	0.7481 (2)	0.4313 (3)	0.0251 (8)
H1C	0.1655	0.8134	0.4207	0.030*
H1D	0.1780	0.7213	0.3454	0.030*
C2	0.3035 (3)	0.7266 (2)	0.5115 (3)	0.0196 (7)
H2C	0.3842	0.7463	0.4667	0.024*
H2D	0.3043	0.7586	0.5942	0.024*
C3	0.1836 (3)	0.5950 (2)	0.5878 (3)	0.0177 (7)
H3A	0.1749	0.6202	0.6742	0.021*
H3B	0.1876	0.5293	0.5954	0.021*
C4	0.0621 (3)	0.6215 (2)	0.5008 (3)	0.0224 (8)
H4A	0.0697	0.5943	0.4155	0.027*
H4B	-0.0230	0.5990	0.5356	0.027*
O2	0.7598 (2)	0.98715 (13)	0.6677 (2)	0.0219 (5)
N2	0.8070 (3)	0.81133 (16)	0.5829 (2)	0.0182 (6)
H2A	0.8219	0.7525	0.6039	0.022*
H2B	0.8078	0.8167	0.4955	0.022*
C5	0.8865 (3)	0.9630 (2)	0.6206 (3)	0.0259 (8)
H5A	0.9605	1.0003	0.6622	0.031*
H5B	0.8830	0.9745	0.5274	0.031*
C6	0.9189 (3)	0.8666 (2)	0.6456 (3)	0.0257 (8)
H6A	1.0076	0.8511	0.6108	0.031*
H6B	0.9267	0.8550	0.7388	0.031*
C7	0.6702 (3)	0.8394 (2)	0.6240 (3)	0.0196 (7)
H7A	0.6639	0.8255	0.7157	0.024*
H7B	0.5964	0.8066	0.5742	0.024*
C8	0.6522 (3)	0.9378 (2)	0.6026 (3)	0.0232 (8)
H8A	0.6505	0.9505	0.5099	0.028*
H8B	0.5630	0.9567	0.6332	0.028*

sup-4

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co	$0.0151(2)$	$0.0141(2)$	$0.0135(2)$	$0.00047(19)$	$0.00119(17)$	$-0.00033(17)$
Cl1	$0.0197(4)$	$0.0212(4)$	$0.0161(4)$	$0.0040(3)$	$0.0027(3)$	$-0.0015(3)$
C12	$0.0282(5)$	$0.0152(4)$	$0.0190(4)$	$0.0025(3)$	$0.0045(3)$	$0.0005(3)$
C13	$0.0165(4)$	$0.0196(4)$	$0.0175(4)$	$-0.0021(3)$	$-0.0015(3)$	$0.0018(3)$
C14	$0.0242(5)$	$0.0225(4)$	$0.0130(4)$	$0.0032(3)$	$0.0010(3)$	$0.0004(3)$
O1	$0.0180(13)$	$0.0232(13)$	$0.0358(14)$	$0.0090(10)$	$0.0089(11)$	$0.0097(10)$
N1	$0.0140(15)$	$0.0217(15)$	$0.0179(14)$	$0.0042(12)$	$-0.0025(12)$	$-0.0014(11)$
C1	$0.029(2)$	$0.0201(18)$	$0.0277(19)$	$0.0023(16)$	$0.0087(17)$	$0.0110(15)$
C2	$0.020(2)$	$0.0171(18)$	$0.0218(17)$	$-0.0042(14)$	$0.0053(15)$	$-0.0008(14)$
C3	$0.0257(19)$	$0.0131(17)$	$0.0146(15)$	$-0.0001(14)$	$0.0036(14)$	$0.0018(13)$
C4	$0.0151(18)$	$0.0252(19)$	$0.0277(18)$	$0.0011(15)$	$0.0066(15)$	$0.0039(15)$
O2	$0.0200(13)$	$0.0208(12)$	$0.0252(12)$	$-0.0009(10)$	$0.0033(10)$	$-0.0135(10)$
N2	$0.0224(16)$	$0.0127(14)$	$0.0194(14)$	$0.0002(12)$	$0.0002(12)$	$0.0008(11)$
C5	$0.024(2)$	$0.0232(19)$	$0.031(2)$	$-0.0098(15)$	$0.0019(16)$	$-0.0087(15)$
C6	$0.0123(18)$	$0.028(2)$	$0.036(2)$	$-0.0012(15)$	$-0.0037(16)$	$-0.0058(15)$
C7	$0.0169(18)$	$0.0225(18)$	$0.0197(17)$	$-0.0057(14)$	$0.0031(14)$	$-0.0019(14)$
C8	$0.0177(18)$	$0.0231(19)$	$0.0287(19)$	$-0.0009(15)$	$0.0021(15)$	$-0.0066(15)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{Co}-\mathrm{Cl1}$	$2.2583(8)$
$\mathrm{Co}-\mathrm{Cl} 2$	$2.2644(8)$
$\mathrm{Co}-\mathrm{Cl} 4$	$2.2656(8)$
$\mathrm{Co}-\mathrm{Cl} 3$	$2.2818(8)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.428(4)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.419(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.488(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.494(4)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9200
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	0.9200
$\mathrm{C} 1-\mathrm{C} 2$	$1.507(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9900
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	$1.498(4)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 2$	$113.65(3)$
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 4$	$106.01(3)$
$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 4$	$113.73(3)$
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 3$	$108.68(3)$
$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 3$	$107.50(3)$
$\mathrm{Cl} 4-\mathrm{Co}-\mathrm{Cl} 3$	$107.00(3)$

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{O} 2-\mathrm{C} 8$	$1.420(4)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.410(4)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.486(4)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.492(4)$
N2-H2A	0.9200
N2-H2B	0.9200
C5-C6	$1.503(4)$
C5-H5A	0.9900
C5-H5B	0.9900
C6-H6A	0.9900
C6-H6B	0.9900
C7-C8	$1.503(4)$
C7-H7A	0.9900
C7-H7B	0.9900
C8-H8A	0.9900
C8-H8B	0.9900
O1-C4-H4B	109.4
C3-C4-H4B	109.4
H4A-C4-H4B	108.0
C8-O2-C5	$109.5(2)$
C6-N2-C7	$111.0(2)$
C6-N2-H2A	109.4

C1-O1-C4	109.9 (2)	C7-N2-H2A	109.4
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	111.2 (2)	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.4	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.4	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
C3-N1-H1B	109.4	O2-C5-C6	111.5 (3)
C2-N1-H1B	109.4	O2- $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.0	C6-C5-H5A	109.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	111.9 (2)	O2-C5-H5B	109.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H1C}$	109.2	C6-C5-H5B	109.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.2	H5A-C5-H5B	108.0
O1-C1-H1D	109.2	N2-C6-C5	108.8 (3)
C2-C1-H1D	109.2	N2-C6-H6A	109.9
H1C-C1-H1D	107.9	C5-C6-H6A	109.9
N1-C2-C1	109.5 (2)	N2-C6-H6B	109.9
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.8	C5-C6-H6B	109.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.8	H6A-C6-H6B	108.3
N1-C2-H2D	109.8	N2-C7-C8	109.4 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	109.8	N2-C7-H7A	109.8
$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.2	C8-C7-H7A	109.8
N1-C3-C4	109.3 (2)	N2-C7-H7B	109.8
N1-C3-H3A	109.8	C8-C7-H7B	109.8
C4-C3-H3A	109.8	H7A-C7-H7B	108.2
N1-C3-H3B	109.8	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	111.6 (3)
C4-C3-H3B	109.8	O2-C8-H8A	109.3
H3A-C3-H3B	108.3	C7-C8-H8A	109.3
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	111.0 (3)	O2-C8-H8B	109.3
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4	C7-C8-H8B	109.3
C3-C4-H4A	109.4	H8A-C8-H8B	108.0

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.92	2.40	$3.275(3)$	159.
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl1}$	0.92	2.38	$3.184(2)$	146.
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl3}$	0.92	2.45	$3.232(3)$	142.
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl} 3^{\mathrm{ii}}$	0.92	2.37	$3.264(3)$	163.
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{C} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.99	2.71	$3.603(3)$	151.
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.99	2.77	$3.556(3)$	136.
$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.99	2.83	$3.767(3)$	158.

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+3 / 2, z-1 / 2$; (iii) $-x+2, y+1 / 2,-z+3 / 2$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

